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The aim of this paper is to give a characterization of the finite-dimensional
subspaces of Lp , 1 <.p < 00, and Coen whose metric projections admit linear
selections. The paper also gives a characterization of finite co-dimensional
subspaces of II and Co whose metric projections have linear selections. © 1985

Academic Press, Inc.

1. INTRODUCTION

A linear subspace M of a normed linear space X is called proximinal
(resp. Chebyshev) if, for each x in X, the set of best approximations to x
from M, Le., the set

PM(x) = {y E M: Ilx - yll = inf Ilx +mill
mEM

is nonempty (resp. a singleton). The set-valued mapping PM: X -+ 2M thus
defined is called the metric projection onto M. A selection for PM is a
function s: X -+ M such that s(x) E PM(X) for every x E X. Let MO denote

{xEX: Ilxll = inf Ilx-mlll.
mEM

It is known [5] that PM has a linear selection if and only if M O contains a
closed subspace N such that X = M + N.

In Section 2, we study the linear metric projections on L p= L p(T, E, fJ.).
Let A o denote a union of atoms in (T, 1:, fJ.) and let Al = T - A o. For an n­
dimensional subspace M of L p , we prove the following theorem. PM has a
linear selection if and only if there exist k disjoint measurable subsets
Bl' B 2 ,... , B k of A o such that M = (fJ:=1 M i and M i is either Lp(BJ or a
hyperplane of Lp(BJ, where LiBJ is the set

{/EL p : supp(f)<;;Btl·
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If M is a n-co-dimensional subspace of L p , we prove the following theorem.
PM admits a linear selection if and only if there exist n disjoint measurable
sets Tl' T2 ,... , Tn such that M= EB7=1 MjEBLp(T- U7=1 Tj), where.Mj is a
hyperplane of Lp(Tj ).

In Section 3, we consider the space L] = L] (T,.E, p) of integrable
functions on the measure space (T,.E, p). For an n-dimensional subspace M
of L], we prove the following theorem. PM has a linear selection if and only
if there exists a subset To of T which contains exactly n atoms such that for
each mEM

f Im(t)1 dp ~f [m(t)1 lip.
To T-To

Let (e j ) be the natural basis of I]. For any subspace M of 1], we prove the
following theorem. PM has a linear selection if and only if there exists a
subset S ~ N such that span {e j : i E S} is a complement of M and

)' Im(i)I~)' Im(i)1
~ .........
j¢S jES

for each m E M.
In Section 4, we consider the space Co(T) of all real-valued continuous

functions on the locally Hausdorff space T which vanish at infinity. Let A o
be the union of all isolated points of T. For an n-dimensional subspace M of
Co(T), we prove that PM admits a linear selection if and only if there exist k
disjoint subsets B 1,B2 , ...,Bk of Ao such that M= EB~=IMj, where M j is
either C(BJ or a hyperplane of C(B;). For an n-co-dimensional subspace M
of co' we prove that PM has a linear selection if and only if there exist n
disjoint finite subsets Bl'B2 ,... ,Bn of IN such M= EB7=IMjEB
co(1N - U7=1 BJ, where M j is a hyperplane of C(B;).

2. LINEAR SELECTIONS IN L p , 1 <p < 00

Let (T,.E,p) be a measure space, and let Lp=Lp(T,.E,p), I ~p < 00,

denote the space of all real-valued measurable functions x on T whose
absolute pth powers are integrable and whose norm is

[ J
lip

Ilxll= !rlx(t)IPdt .

An atom is a set A E .E such that 0 <p(A) < 00 and if B is a measurable
subset of A then either p(A) = pCB) or pCB) = O. Hence, any measurable
function x is constant a.e. (u) on an atom A, and we can assume that every
atom contains only one point. For x E L p , the support of x and zero set of x
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are defined (up to a set of measure zero) by supp(x) = {tE T:x(t):;tO} and
Z(x) = T - supp x = {t E T: x(t) = O}. If x E L p, we will denote by [x] the
one-dimensional subspace spanned by x.

Suppose M is a subspace of L p , 1~p < 00, such that PM admits a linear
metric selection s. Then 1- s is a contractive projection. The range N of
such a projection ([ 1], also see Theorem 3 of [8, p. 162]) is of the form

N = {fg:fE Lp(T, 1:0 , v)},

where 1:0 is a subring of 1:, gELp(T, 1:, p) and dv = Ig I-Pdp.
We need the following characterization of best approximations from

subspaces of L p , 1 <p < 00.

LEMMA 1. [4] Let O:;tyELp, 1 <p < 00, and xELp • Then xE [y]O if
and only if

f/ sgnx IxIP
-

I
dp = O.

Hence, if 1 <p < 00, M is a subspace of

M = 1y E Lp :f/ sgn x Ix IP - I dp = 0 for all x E N l

= !YELp: Ly Ig\P-I sgngd,u = 0 for alIA E 1:+

and M +N=Lp. Clearly M is a complement of N, and M=M. We have
the following theorem.

THEOREM 2. Let M be a subspace of L p' 1 <p < 00. Then PM admits a
linear selection if and only if there exist g E L p and a subring 1:0 of 1: such
that

M = {y E L p : Jy sgn gig \P - I dp = 0 for all A E 1:0 }.

A /

Let Ao denote a union of atoms in (T, 1:,p) and let Al = T - Ao. We have
the following corollary.

COROLLARY 3. Suppose M is an n-dimensional subspace of L p'
1 <p < 00. The following properties are equivalent.

(i) PM admits a linear selection s.
(ii) There exist k disjoint subsets B I,B2 ,...,Bk of A o such that

M = EB~=I M i , where M i is either Lp(BJ or a hyperplane ofLiB i )·
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Proof (i)~ (ii). The range N of 1- s is an n co-dimensional subspace
of L p. One can verify that Lp(A I) ~ N. Moreover, there exist k disjoint
measurable subsets B l' B 2"'" B k of A 0 such that

k k

N=Lp (T- i~1 Bi ) ~ [gXBJ.

Hence, M = EBf= 1 M j , where

M i = !yELp: supp(y) E B j andJy sgn g IgIP-J d/.t = 01·

(ii)~ (i). It follows from the following lemma and the fact that if Mis
a proximinal hyperplane, then PM has a linear selection.

LEMMA 4. Suppose M i is a proximinal subspace ofXi and for each i, PM
admits a linear selection Sf' Then M= (EBM/)p (resp. M= (EBM/)o),'
1~p < 00, (resp. p= 00) is a proximinal subspace of x= (EBXJp (resp.
X = (EB X/)o)' Moreover, PM has a linear selection EB Sf'

Proof For each x/EXt, Ils/(xJII~2I1xtll- Hence, if (x/) EX, then
(s/(xJ) E M, and (slx/)) is a best approximation to (x/) from M. So PM
admits a linear selection. I

COROLLARY 5. Let M be an n-co-dimensional subspace of L p,
1 <p < 00. The following properties are equivalent.

(i) PM admits a linear selection s.

(ii) There exist n disjoint measurable sets TI' T 2 ,••• , Tn such that
M = EB7=1 M/ EB Lp(T - U7=1 T/), where M j is a hyperplane of Lp(TJ

Proof (i)~ (ii). The range of 1- s is an n-dimensional subspace of
L p • Hence, (T, Eo, v) is purely atomic, and there exist n disjoint sets
T J, T2 ,... , Tn E Eo such that g IT/ '* ° for each i. Therefore,
M= EB7=IM/EBLp(T- U7=1 T/), where

(ii) ~ (i) L p is uniformly convex. Hence, every subspace is proximinal.
By Lemma 4, PM admits a linear selection.
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3. LINEAR SELECTION IN L,

In this section, we give a characterization of those fmite-dimensional
subspaces of L, whose metric projections admit linear selections. We will
need to use the following characterization of best approximations. It was first
proved in the case L, [0, 1] by James [6] and in the generality stated here by
Kripke and Rivlin [7].

LEMMA 6. Let x E L, - {O}. Then 0 E p[yj(x) if and only if

If y sgn x d,u I~ flY Id,u.
T Z(x)

Moreover, if strict inequality holds, then p[yj(x) = {O}.
The following theorem extends the result of Theorem 4.4 of [2].

THEOREM 7. Suppose that M is an n-dimensional subspace of L ,. The
following properties are equivalent.

(i) PM admits a linear selection.

(ii) There exists a subset T, of T which contains exactly n atoms such
that for any m E M

f Im(t)1 d.u ~f Im(t)1 d,u.
T, T-T,

Proof (i) => (ii). Let Ao denote a union of atoms in (T, E,,u) and let
A, = T, - Ao' Since the unit ball of M is weakly compact, there exists () > 0
such that if ,u(B) <() then fBI m(t)1 d,u < 1/4 for mE M and II m II = 1. A, is
atomless ; hence, there exist disjoint measurable sets B /s such that A, = UBi
and ,u(B;) < () for all i. First, we claim that if x E L, and supp x ~ B i for
some i, then x has exactly one best approximation O. Clearly,

Itm sgn x d,uI~ti Im(t)1 d,u

~ Ilmi1/4
<311m11/4

~ f
T

-
B

Im(t)1 dp
I

~f Im(t)1 d,u.
Z(x)
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By Lemma 6, PM(x) = lOt. Now we claim that there exist t l E Ao and m E M
such that

If it were not true, by Lemma 6 each x with card(supp x) = 1 and
supp(x) <;: Ao has exactly one best approximation a. But every mE M is of
the form

m= L mX'tJ+EmXB;'
tEA o

Hence, PM does not admit any linear selection unless M = {a}. Choose
m I EM so that there exists tiE Ao and

Let M 1 = {m E M: m(t.) = a}. Repeat the above argument on M., and
T - {t l }. There exist m2 E M I and t 2 E Ao - {tl} so that

Let M 2= {m E M.: m(t2) = O}. Replace m l by m. - m j (t2) m2 /mit2) if
necessary. So we can assume m j (t2) = a. By induction, there exist
m l , m2,..., mnE M and {tl> t2,..., tnt = T I <;:A o so that mJtj ) = a if i=l=-j and

Clearly, m l' m2,..., mn form a basis of M. And for any m EM

f Im(t)1 dp ~f Im(t)ldp.
T1 T-T 1

(ii):::> (i). Let N=L.(T- T 1). For xEN and mEM

f Im(t)1 dp ~ f Im(t)! dp
Z(x) T,

~ IT_T,lm(t)1 dp

~ IIT m(t) sgn x(t) dp I·
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By Lemma 6, N~Mo. Clearly, N is a complement of M. Therefore, PM
admits a linear selection. I

The next theorem gives a characterization of subspaces M of I) whose
metric projections admit linear selections.

THEOREM 8. Let M be a subspace of I) and let (eJ be the natural basis
of I). The following properties are equivalent.

(i) PM admits a linear selection s.

(ii) There exists a subset S of IN such that span{e i : i E S} is a
complement of M and for every m E M

L Im(i)1 ~ L Im(i)I·
iriS ieS

Proof. (i)~ (ii). Since IN is purely atomic, the range of 1- s is
spanned by a set of the form {Xi: i E S} where x/s are pairwise disjoint and
i= min(supp x;). Moreover, we may assume that Ilxill = 1. We claim that for
k E supp Xi' (I - s) ek = sgn Xi(k) Xi' Suppose this claim were proved. Then
for j, k E supp Xi' either (I - s)(ej + ek ) = 0 or (I - s)(ej - ek ) = O. Thus,
either (ej + ek ) E M or (ej - ek ) E M. And the set {m E M: supp m ~ supp Xi}

is a hyperplane of l)(supp x;). So span{e i : i E S} is a complement of M and

Hence,

II L aieill = L lad = II (I - s) (L aiei)!I,
ieS ieS ieS

and 0 E PM (~=ies aie,), Therefore, by Lemma 6, for every mE M and the
choice a i = m(i) for i E S, we have

L Im(i)1 ~ L Im(i)l·
iriS ieS

It remains to prove that for kEsuppxi, (I-s)ek=sgnxi(k)xi. For
every k E IN, (I - s) ek is of the form Ljes a7 xj ' and

L la71 = L a7xj ll ~ Ilekll = 1.
jeS jeS
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On the other hand,

Xi = (I -s)xi

= (I - s) ( L xi(k) ek)
kesupp(Xj)

= L x i (k)(1 - s) ek
kesupp(x/)

= L L xi(k) aJxj •

kesupp(x/) jeS

71

And so LkeSUpp(x/) xi(k) a~ = 1. Since LkeSUpp(x/) Ixi(k)1 = Ilx;!1 = 1, we must
have a~ = sgn xi(k). Therefore, a7 = 0 if j *" i and (I - s) ek = sgn xi(k) Xi if
k E supp Xi'

(ii) => (i). Let N = /1 (rN - S). By Lemma 6, N ~ MO. Since N is a
complement of M, PM admits a linear selection. I

Remark 1. If M is a subspace of codimension n in L I and if PM admits a
linear selection s, then there exist n pairwise disjoint functions xl' x 2 , ••• , x n
such that range(1 - s) = span {Xi: i = 1, 2,... , n}. Moreover, we can suppose
Ilxill = 1. One can verify that if B is a measurable subset of supp Xi' then
(I - S)(XiXB) = IlxiXBIi Xi' Therefore, {m E M: supp(m) ~ supp(x;)} is a
hyperplane of LI(supp Xi)'

4. LINEAR SELECTION IN Co(T)

Let T be a locally compact Hausdorff space. Co(T) will denote the space
of all continuous real functions X on T which "vanish at infinity" (i.e.,
{t E T: Ix(t)1 ~ e} is compact for every e >0) and endowed with the uniform
norm: Ilxll = sup{lx(t)I: tE T}.

If T' is a closed subset of T and X E Co(T), then X IT' denotes restriction
of X to T'. If M is a closed subspace of Co(T), then M' =MI T=
{m IT': m EM} is a closed subspace of Co(T'). PM' will denote the metric
projection from Co(T') into 2M

'. If T' is also an open subset, we can extend
each X' E Co(T') by

x(t) = !~' (t)
if tE T'

if t ft. T'.

In this case, we will not distinguish between X' and x.

LEMMA 9. Let M be a subspace ofCo(T) and T' = {t l' t2 ,... , tn } afinite
subset of T. Let M' =MI T'. If there exist y;,y~ E CCT') such that
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Yj(tj ) E {-I, 0, I}, PM'(Y;) = {O} for i = 1,2, j = 1,2,... , n, and
oE PM,(y; +yD then PM has no linear selection.

Proof Since 0 E PM,(y; +yD there exists mE M such that

II Y; +y~ - miT' II < II Y; +y~ II·

Choose pairwise disjoint neighborhoods Uj of t j such that if t E Ui then
met) sgn m(ti)~ ~ Im(t;)l. By Uryshon's lemma, there exist functions
Xi E Co(T) (i = 1,2,..., n) such that 0::;; Xi::;; 1, Xi(t i) = 1 and xi(t) = 0 off Ui.
Set Yj = L7=1 yj(t j ) Xi for j = 1,2. Clearly, II YIII = II Y211 = 1 = II Y; II = II y~ll·
(Note: YI *- 0; otherwise Y; = 0 and PM,(y; +yD = PM,(yD = {O}. Similarly,
Y2 *- 0.) Hence, if z E PM(Yj) for i = 1 or 2, then ziT' = O. It is also clear
that II YI +Y211 = II Y; +y~11 and if I(YI +Y2)(ti)1 = II YI +hll, then
m(t)(YI(t) +Y2(t)) ~ 0 for t E Ui . Since I(YI +Y2)(ti)1 E {O, 1,2},

IIYI +Y2- am ll

::;; max (1\ Y; + y~ - ~ . miT' II, II YI+Y211- 1 + a II m II, a II mil)

<IIYI+Y211

for 0 <a < min(l, Ij(21Imll)). Therefore, if z E PM(YI +Y2)' then ziT' *- 0
and PM does not admit any linear selection. I

It is easy to verify the following lemma.

LEMMA 10. Let T = {tI' tv'''' tn} and let M be an n - I-dimensional
subspace ofC(T). Ifcard(sup m) ~ 2 whenever mE M and m *- 0, then M is
Chebyshev. In this case, if PM(x) = 0 and Ilxll = 1, then Ix(ti)1 = 1 for
i= 1,2,..., n.

The following theorem extends Theorem 3.5 of [2].

THEOREM 11. Let M be an n-dimensional subspace of Co(T). The
following properties are equivalent.

(i) PM admits a linear selection.

(ii) There exists a basis {m p m2,..., mn } of M such that
card(supp m;)::;; 2 for i = 1,2,... , n.

(iii) Let Ao be the union of all isolated points of T, then there exist k
disjoint subsets BI'B2,... ,Bk of A o such that M= ffi~=IMi' where Mi is
either C(Bi) or a hyperplane ofC(BJ

Proof (i) => (ii). There exists a subset T' = {t l' t2,..., tn} of T such that
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MIT' has dimension n. Therefore, MIT' = C(T') and there exist n functions
mil m2,..., mn in M such that m;(tj ) =Oij' where oij is the' Kronecker delta.
Clearly, the m/s form a basis of M. We claim that card(supp(ml»~ 2.
Suppose on the contrary that card(supp ml ) ~ 3. Let tn + I and tn +2 be any
two elements in supp m l - {tl}' Let 8 1 = {i: ml(tn+lh~: O}, 8 2 = it: iE 8 1

and ml(tn+2)*O}, T;={tl :iE8I U{n+l}}, and T~={tl:iE82U

{n + 2}}. Clearly, MIT; has dimension card(8 I) = card(T;) - 1, and if
mE M then either miT; = 0 or card(sup(m)(T') ~ 2. M' =MIT; is
Chebyshev in C(T;). Hence, there exist Y' E C(T;) such that Pw(Y') = {O}
and Iy'(tl)1 = 1 for t l E T;. Similarly M" = span{ml : i E 8 2 } IT~ is
Chebyshev in C(TD and there exist y" E C(Tn such that Iy"(tl)1 = 1 for
tl E T~, and Pw'(y") = {O}. Let YI' i = 1, 2, in C(T; U TD be defined by

if tj E T;
if tj E T~.

Let T I = T; U T~ and L = M ITI . We claim that PL(yJ = {O} for i = 1, or 2.
Suppose m' E PL(yJ Then m' = Lles,us2almll Ti and m'l T; =
Lies almll T; for some a;'s. Since y; IT; = y', II Yi IT; - m'l T;II ~

I

II YIII = 1= II YII T; II if and only if m' IT; = O. Therefore, al = 0 for i E 8 I

and m' = Lles2 almll T I . Since YII T~ = ±y", II(YI- m') I T~II ~ 1= II YIII if
and only if aI = 0 for i E 8 2 , Hence, m' = O. On the other hand,

if t i E T;
if tl E T~.

Since MI T~ =L IT~ = C(TD, 0 does not belong to PL(YI - Y2)' By
Lemma 9, PM does not admit a linear selection. This is a contradiction.

(ii) ~ (iii). Let ~ be an equivalence relation given by i ~ j if
supp m l (J supp mj *" 0. If 8 is an equivalence class, then
M s = span{ml : i E 8} is a hyperplane of C(U leS supp m l ) unless
card(U leS supp(ml»= card 8. If 8 1 and 8 2 are distinct equivalent classes,
then U leSl supp(ml) and U leS2 supp(ml) are disjoint. Hence,

(sum over all equivalence classes 8)

and M s is either C(Ules supp(ml» or a hyperplane of C(Uies supp(mi».
(iii)~ (i). Since M I is a finite-dimensional subspace, M I is proximinal.

Hence, PM admits a linear selection from C(BJ into MI' Since Co(T) =
k I k k

EBI=IC(BI)EBCo(T-UI=IBi) and M= EBi=IMiEB{O}, Lemma4 PM
admits a linear selection. I

The following theorem gives a characterization of finite co-dimensional
subspaces of Co whose metric projections have a linear selections.
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THEOREM 12. Suppose M is an n-co-dimensional subspace of co' The
following properties are equivalent.

(i) PM admits a linear selection s.

(ii) There exist n disjoint finite subsets B l' B 2'"'' B n of IN such that
M = EB7~1 Mt EB Co(1N - U7=1 BJ where Mt is a hyperplane of C(B{).

Proof (i) => (ii). Since the dimension of ker s is n, we can find n
vectors YI'Y2 ,...,Yn E ker sand n points tI' t2,... , tn E IN such that Yt(tj) =~ ij'

Since Yt E co' i = 1,2,... , n, there exists N such that if m >N then
IYt(m)! < 1/2n for i = 1,2, , n. Hence, for Y E ker sand m >N, Iy(m)1 <
II yll/2. Let M' = M I{l, 2, , n}. Then PM' admits a linear selection
slC({l,2,...,N}). By Theorem 11, there exist k disjoint sets BI'B 2 , ...,B k

such that U~= I B k = {l, 2,..., N} and M' = EB~~ I M p where M{ is a hyper­
plane of C(B k ). We claim that if xCi) = 0 for i ~ N, then x E M. If it were not
true then x = Y +m for some Y E ker sand m E M. Hence, y(i) = -m(i) for
i ~ N. But 0 E PM(y) and Iy(j)! ~ II yl1/2 for j> N. This is impossible.
Therefore,

k

M = <±) M; EB Co(1N - {l, 2,... , N})
t=1

and k = n (since M is an n-co-dimensional subspace).

(ii) => (i). M t is proximinal hyperplane of C(B;). By Lemma 4, PM admits
a linear selection. I
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