Remarks on Linear Selections for the Metric Projection

Pei-kee Lin*

Department of Mathematics, University of Texas, Austin, Texas 78712, U.S.A.

Communicated by E. W. Cheney

Received August 25, 1983; revised February 18, 1984

The aim of this paper is to give a characterization of the finite-dimensional subspaces of L_p , $1 \le p < \infty$, and $C_0(T)$ whose metric projections admit linear selections. The paper also gives a characterization of finite co-dimensional subspaces of l_1 and c_0 whose metric projections have linear selections. © 1985 Academic Press, Inc.

1. INTRODUCTION

A linear subspace M of a normed linear space X is called *proximinal* (resp. *Chebyshev*) if, for each x in X, the set of best approximations to x from M, i.e., the set

$$P_{M}(x) = \{ y \in M : ||x - y|| = \inf_{m \in M} ||x + m|| \}$$

is nonempty (resp. a singleton). The set-valued mapping $P_M: X \to 2^M$ thus defined is called the *metric projection* onto M. A selection for P_M is a function $s: X \to M$ such that $s(x) \in P_M(x)$ for every $x \in X$. Let M^0 denote

$$\{x \in X : \|x\| = \inf_{m \in M} \|x - m\|\}.$$

It is known [5] that P_M has a linear selection if and only if M^0 contains a closed subspace N such that X = M + N.

In Section 2, we study the linear metric projections on $L_p = L_p(T, \Sigma, \mu)$. Let A_0 denote a union of atoms in (T, Σ, μ) and let $A_1 = T - A_0$. For an *n*-dimensional subspace M of L_p , we prove the following theorem. P_M has a linear selection if and only if there exist k disjoint measurable subsets $B_1, B_2, ..., B_k$ of A_0 such that $M = \bigoplus_{i=1}^k M_i$ and M_i is either $L_p(B_i)$ or a hyperplane of $L_p(B_i)$, where $L_p(B_i)$ is the set

$$\{f \in L_p : \operatorname{supp}(f) \subseteq B_i\}.$$

* Present address: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242.

If M is a *n*-co-dimensional subspace of L_p , we prove the following theorem. P_M admits a linear selection if and only if there exist *n* disjoint measurable sets $T_1, T_2, ..., T_n$ such that $M = \bigoplus_{i=1}^n M_i \oplus L_p(T - \bigcup_{i=1}^n T_i)$, where M_i is a hyperplane of $L_p(T_i)$.

In Section 3, we consider the space $L_1 = L_1(T, \Sigma, \mu)$ of integrable functions on the measure space (T, Σ, μ) . For an *n*-dimensional subspace *M* of L_1 , we prove the following theorem. P_M has a linear selection if and only if there exists a subset T_0 of *T* which contains exactly *n* atoms such that for each $m \in M$

$$\int_{T_0} |m(t)| d\mu \geq \int_{T-T_0} |m(t)| d\mu.$$

Let (e_i) be the natural basis of l_1 . For any subspace M of l_1 , we prove the following theorem. P_M has a linear selection if and only if there exists a subset $S \subseteq N$ such that span $\{e_i : i \in S\}$ is a complement of M and

$$\sum_{i \notin S} |m(i)| \ge \sum_{i \in S} |m(i)|$$

for each $m \in M$.

In Section 4, we consider the space $C_0(T)$ of all real-valued continuous functions on the locally Hausdorff space T which vanish at infinity. Let A_0 be the union of all isolated points of T. For an *n*-dimensional subspace M of $C_0(T)$, we prove that P_M admits a linear selection if and only if there exist kdisjoint subsets $B_1, B_2, ..., B_k$ of A_0 such that $M = \bigoplus_{i=1}^k M_i$, where M_i is either $C(B_i)$ or a hyperplane of $C(B_i)$. For an *n*-co-dimensional subspace Mof c_0 , we prove that P_M has a linear selection if and only if there exist ndisjoint finite subsets $B_1, B_2, ..., B_n$ of \mathbb{N} such $M = \bigoplus_{i=1}^n M_i \oplus$ $c_0(\mathbb{N} - \bigcup_{i=1}^n B_i)$, where M_i is a hyperplane of $C(B_i)$.

2. Linear Selections in L_p , 1

Let (T, Σ, μ) be a measure space, and let $L_p = L_p(T, \Sigma, \mu)$, $1 \le p < \infty$, denote the space of all real-valued measurable functions x on T whose absolute pth powers are integrable and whose norm is

$$\|x\| = \left[\int_T |x(t)|^p dt\right]^{1/p}.$$

An atom is a set $A \in \Sigma$ such that $0 < \mu(A) < \infty$ and if B is a measurable subset of A then either $\mu(A) = \mu(B)$ or $\mu(B) = 0$. Hence, any measurable function x is constant a.e. (μ) on an atom A, and we can assume that every atom contains only one point. For $x \in L_p$, the support of x and zero set of x are defined (up to a set of measure zero) by $\operatorname{supp}(x) = \{t \in T : x(t) \neq 0\}$ and $Z(x) = T - \operatorname{supp} x = \{t \in T : x(t) = 0\}$. If $x \in L_p$, we will denote by [x] the one-dimensional subspace spanned by x.

Suppose *M* is a subspace of L_p , $1 \le p < \infty$, such that P_M admits a linear metric selection *s*. Then I-s is a contractive projection. The range *N* of such a projection ([1], also see Theorem 3 of [8, p. 162]) is of the form

$$N = \{ fg: f \in L_p(T, \Sigma_0, v) \},\$$

where Σ_0 is a subring of Σ , $g \in L_p(T, \Sigma, \mu)$ and $dv = |g|^{-p} d\mu$.

We need the following characterization of best approximations from subspaces of L_p , 1 .

LEMMA 1. [4] Let $0 \neq y \in L_p$, $1 , and <math>x \in L_p$. Then $x \in [y]^0$ if and only if

$$\int_T y \operatorname{sgn} x |x|^{p-1} d\mu = 0.$$

Hence, if 1 , M is a subspace of

$$\overline{M} = \left\{ y \in L_p : \int_T y \operatorname{sgn} x |x|^{p-1} d\mu = 0 \text{ for all } x \in N \right\}$$
$$= \left\{ y \in L_p : \int_A y |g|^{p-1} \operatorname{sgn} g d\mu = 0 \text{ for all } A \in \Sigma_0 \right\},$$

and $M + N = L_p$. Clearly \overline{M} is a complement of N, and $\overline{M} = M$. We have the following theorem.

THEOREM 2. Let M be a subspace of L_p , $1 . Then <math>P_M$ admits a linear selection if and only if there exist $g \in L_p$ and a subring Σ_0 of Σ such that

$$M = \{ y \in L_p : \int_A y \operatorname{sgn} g \mid g \mid^{p-1} d\mu = 0 \text{ for all } A \in \Sigma_0 \}.$$

Let A_0 denote a union of atoms in (T, Σ, μ) and let $A_1 = T - A_0$. We have the following corollary.

COROLLARY 3. Suppose M is an n-dimensional subspace of L_p , 1 . The following properties are equivalent.

(i) P_M admits a linear selection s.

(ii) There exist k disjoint subsets $B_1, B_2, ..., B_k$ of A_0 such that $M = \bigoplus_{i=1}^k M_i$, where M_i is either $L_p(B_i)$ or a hyperplane of $L_p(B_i)$.

Proof. (i) \Rightarrow (ii). The range N of I - s is an n co-dimensional subspace of L_p . One can verify that $L_p(A_1) \subseteq N$. Moreover, there exist k disjoint measurable subsets $B_1, B_2, ..., B_k$ of A_0 such that

$$N = L_p \left(T - \bigcup_{i=1}^k B_i \right) \bigoplus_{i=1}^k [g\chi_{B_i}].$$

Hence, $M = \bigoplus_{i=1}^{k} M_i$, where

$$M_i = \left\{ y \in L_p : \operatorname{supp}(y) \in B_i \text{ and } \int y \operatorname{sgn} g |g|^{p-1} d\mu = 0 \right\}.$$

(ii) \Rightarrow (i). It follows from the following lemma and the fact that if M is a proximinal hyperplane, then P_M has a linear selection.

LEMMA 4. Suppose M_i is a proximinal subspace of X_i and for each i, P_{M_i} admits a linear selection s_i . Then $M = (\bigoplus M_i)_p$ (resp. $M = (\bigoplus M_i)_0$), $1 \le p < \infty$, (resp. $p = \infty$) is a proximinal subspace of $X = (\bigoplus X_i)_p$ (resp. $X = (\bigoplus X_i)_p$). Moreover, P_M has a linear selection $\bigoplus s_i$.

Proof. For each $x_i \in X_i$, $||s_i(x_i)|| \le 2 ||x_i||$. Hence, if $(x_i) \in X$, then $(s_i(x_i)) \in M$, and $(s_i(x_i))$ is a best approximation to (x_i) from M. So P_M admits a linear selection.

COROLLARY 5. Let M be an n-co-dimensional subspace of L_p , 1 . The following properties are equivalent.

(i) P_M admits a linear selection s.

(ii) There exist n disjoint measurable sets $T_1, T_2, ..., T_n$ such that $M = \bigoplus_{i=1}^n M_i \bigoplus L_p(T - \bigcup_{i=1}^n T_i)$, where M_i is a hyperplane of $L_p(T_i)$.

Proof. (i) \Rightarrow (ii). The range of I - s is an *n*-dimensional subspace of L_p . Hence, (T, Σ_0, ν) is purely atomic, and there exist *n* disjoint sets $T_1, T_2, ..., T_n \in \Sigma_0$ such that $g \mid T_i \neq 0$ for each *i*. Therefore, $M = \bigoplus_{i=1}^n M_i \oplus L_p(T - \bigcup_{i=1}^n T_i)$, where

$$M_i = \{ y \in L_p : \operatorname{supp} y \subseteq T_i \text{ and } \int y \operatorname{sgn} g \mid g \mid^{p-1} d\mu = 0 \Big\}.$$

(ii) \Rightarrow (i) L_p is uniformly convex. Hence, every subspace is proximinal. By Lemma 4, P_M admits a linear selection.

PEI-KEE LIN

3. LINEAR SELECTION IN L_1

In this section, we give a characterization of those finite-dimensional subspaces of L_1 whose metric projections admit linear selections. We will need to use the following characterization of best approximations. It was first proved in the case $L_1[0, 1]$ by James [6] and in the generality stated here by Kripke and Rivlin [7].

LEMMA 6. Let $x \in L_1 - \{0\}$. Then $0 \in P_{[y]}(x)$ if and only if

 $\left|\int_{T} y \operatorname{sgn} x \, d\mu\right| \leqslant \int_{Z(x)} |y| \, d\mu.$

Moreover, if strict inequality holds, then $P_{[v]}(x) = \{0\}$.

The following theorem extends the result of Theorem 4.4 of [2].

THEOREM 7. Suppose that M is an n-dimensional subspace of L_1 . The following properties are equivalent.

(i) P_M admits a linear selection.

(ii) There exists a subset T_1 of T which contains exactly n atoms such that for any $m \in M$

$$\int_{T_1} |m(t)| d\mu \geq \int_{T-T_1} |m(t)| d\mu.$$

Proof. (i) \Rightarrow (ii). Let A_0 denote a union of atoms in (T, Σ, μ) and let $A_1 = T_1 - A_0$. Since the unit ball of M is weakly compact, there exists $\delta > 0$ such that if $\mu(B) < \delta$ then $\int_B |m(t)| d\mu < 1/4$ for $m \in M$ and ||m|| = 1. A_1 is atomless; hence, there exist disjoint measurable sets B_i 's such that $A_1 = \bigcup B_i$ and $\mu(B_i) < \delta$ for all *i*. First, we claim that if $x \in L_1$ and supp $x \subseteq B_i$ for some *i*, then x has exactly one best approximation 0. Clearly,

$$\int_{T} m \operatorname{sgn} x \, d\mu \, \bigg| \leq \int_{B_{i}} |m(t)| \, d\mu$$
$$\leq ||m||/4$$
$$< 3 ||m||/4$$
$$\leq \int_{T-B_{i}} |m(t)| \, d\mu$$
$$\leq \int_{Z(x)} |m(t)| \, d\mu.$$

By Lemma 6, $P_M(x) = \{0\}$. Now we claim that there exist $t_1 \in A_0$ and $m \in M$ such that

$$|m(t_1) \mu(t_1)| \ge \int_{T-\{t_1\}} |m(t)| \, du.$$

If it were not true, by Lemma 6 each x with $\operatorname{card}(\operatorname{supp} x) = 1$ and $\operatorname{supp}(x) \subseteq A_0$ has exactly one best approximation 0. But every $m \in M$ is of the form

$$m=\sum_{t\in A_0}m\chi_{[t]}+\Sigma m\chi_{B_i}.$$

Hence, P_M does not admit any linear selection unless $M = \{0\}$. Choose $m_1 \in M$ so that there exists $t_1 \in A_0$ and

$$|m_1(t_1)\mu(t_1)| > \int_{T-\{t_1\}} |m_1(t)| d\mu.$$

Let $M_1 = \{m \in M: m(t_1) = 0\}$. Repeat the above argument on M_1 , and $T - \{t_1\}$. There exist $m_2 \in M_1$ and $t_2 \in A_0 - \{t_1\}$ so that

$$|m_2(t_2)\mu(t_2)| \ge \int_{T-\{t_2\}} |m_2(t)| d\mu.$$

Let $M_2 = \{m \in M_1 : m(t_2) = 0\}$. Replace m_1 by $m_1 - m_1(t_2) m_2/m_2(t_2)$ if necessary. So we can assume $m_1(t_2) = 0$. By induction, there exist $m_1, m_2, ..., m_n \in M$ and $\{t_1, t_2, ..., t_n\} = T_1 \subseteq A_0$ so that $m_i(t_j) = 0$ if $i \neq j$ and

$$|m_i(t_i) \mu(t_i)| \ge \int_{T-\{t_i\}} |m_i(t)| d\mu = \int_{T-T_1} |m_i(t)| d\mu$$

Clearly, $m_1, m_2, ..., m_n$ form a basis of M. And for any $m \in M$

$$\int_{T_1} |m(t)| d\mu \geq \int_{T-T_1} |m(t)| d\mu.$$

(ii) \Rightarrow (i). Let $N = L_1(T - T_1)$. For $x \in N$ and $m \in M$

$$\int_{Z(x)} |m(t)| \, d\mu \ge \int_{T_1} |m(t)| \, d\mu$$
$$\ge \int_{T-T_1} |m(t)| \, d\mu$$
$$\ge \left| \int_T m(t) \operatorname{sgn} x(t) \, d\mu \right|.$$

By Lemma 6, $N \subseteq M^0$. Clearly, N is a complement of M. Therefore, P_M admits a linear selection.

The next theorem gives a characterization of subspaces M of l_1 whose metric projections admit linear selections.

THEOREM 8. Let M be a subspace of l_1 and let (e_i) be the natural basis of l_1 . The following properties are equivalent.

(i) P_M admits a linear selection s.

(ii) There exists a subset S of N such that span $\{e_i : i \in S\}$ is a complement of M and for every $m \in M$

$$\sum_{i\notin S} |m(i)| \ge \sum_{i\in S} |m(i)|.$$

Proof. (i) \Rightarrow (ii). Since \mathbb{N} is purely atomic, the range of I-s is spanned by a set of the form $\{x_i: i \in S\}$ where x_i 's are pairwise disjoint and $i = \min(\operatorname{supp} x_i)$. Moreover, we may assume that $||x_i|| = 1$. We claim that for $k \in \operatorname{supp} x_i$, $(I-s)e_k = \operatorname{sgn} x_i(k)x_i$. Suppose this claim were proved. Then for $j, k \in \operatorname{supp} x_i$, either $(I-s)(e_j + e_k) = 0$ or $(I-s)(e_j - e_k) = 0$. Thus, either $(e_j + e_k) \in M$ or $(e_j - e_k) \in M$. And the set $\{m \in M: \operatorname{supp} m \subseteq \operatorname{supp} x_i\}$ is a hyperplane of $l_1(\operatorname{supp} x_i)$. So $\operatorname{span}\{e_i: i \in S\}$ is a complement of M and

$$(I-s)\left(\sum_{i\in S} \alpha_i e_i\right) = \sum_{i\in S} \alpha_i \operatorname{sgn} x_i(i) x_i.$$

Hence,

$$\left\|\sum_{i\in S} \alpha_i e_i\right\| = \sum_{i\in S} |\alpha_i| = \left\| (I-s) \left(\sum_{i\in S} \alpha_i e_i\right) \right\|,$$

and $0 \in P_M(\sum_{i \in S} \alpha_i e_i)$. Therefore, by Lemma 6, for every $m \in M$ and the choice $\alpha_i = m(i)$ for $i \in S$, we have

$$\sum_{i\notin S} |m(i)| \ge \sum_{i\in S} |m(i)|.$$

It remains to prove that for $k \in \operatorname{supp} x_i$, $(I-s) e_k = \operatorname{sgn} x_i(k) x_i$. For every $k \in \mathbb{N}$, $(I-s) e_k$ is of the form $\sum_{j \in S} \alpha_j^k x_j$, and

$$\sum_{j\in S} |\alpha_j^k| = \sum_{j\in S} \alpha_j^k x_j \| \leq \|e_k\| = 1.$$

On the other hand,

$$x_{i} = (I - s) x_{i}$$

$$= (I - s) \left(\sum_{k \in \text{supp}(x_{i})} x_{i}(k) e_{k} \right)$$

$$= \sum_{k \in \text{supp}(x_{i})} x_{i}(k)(I - s) e_{k}$$

$$= \sum_{k \in \text{supp}(x_{i})} \sum_{j \in S} x_{i}(k) \alpha_{j}^{k} x_{j}.$$

And so $\sum_{k \in \text{supp}(x_i)} x_i(k) \alpha_i^k = 1$. Since $\sum_{k \in \text{supp}(x_i)} |x_i(k)| = ||x_i|| = 1$, we must have $\alpha_i^k = \text{sgn } x_i(k)$. Therefore, $\alpha_j^k = 0$ if $j \neq i$ and $(I - s) e_k = \text{sgn } x_i(k) x_i$ if $k \in \text{supp } x_i$.

(ii) \Rightarrow (i). Let $N = l_1(\mathbb{N} - S)$. By Lemma 6, $N \subseteq M^\circ$. Since N is a complement of M, P_M admits a linear selection.

Remark 1. If *M* is a subspace of codimension *n* in L_1 and if P_M admits a linear selection *s*, then there exist *n* pairwise disjoint functions $x_1, x_2, ..., x_n$ such that range $(I - s) = \text{span}\{x_i : i = 1, 2, ..., n\}$. Moreover, we can suppose $||x_i|| = 1$. One can verify that if *B* is a measurable subset of supp x_i , then $(I - s)(x_i\chi_B) = ||x_i\chi_B|| x_i$. Therefore, $\{m \in M: \text{supp}(m) \subseteq \text{supp}(x_i)\}$ is a hyperplane of $L_1(\text{supp } x_i)$.

4. LINEAR SELECTION IN $C_0(T)$

Let T be a locally compact Hausdorff space. $C_0(T)$ will denote the space of all continuous real functions x on T which "vanish at infinity" (i.e., $\{t \in T: |x(t)| \ge \varepsilon\}$ is compact for every $\varepsilon > 0$) and endowed with the uniform norm: $||x|| = \sup\{|x(t)|: t \in T\}$.

If T' is a closed subset of T and $x \in C_0(T)$, then x | T' denotes restriction of x to T'. If M is a closed subspace of $C_0(T)$, then $M' = M | T = \{m | T': m \in M\}$ is a closed subspace of $C_0(T')$. $P_{M'}$ will denote the metric projection from $C_0(T')$ into $2^{M'}$. If T' is also an open subset, we can extend each $x' \in C_0(T')$ by

$$x(t) = \begin{cases} x'(t) & \text{if } t \in T' \\ 0 & \text{if } t \notin T'. \end{cases}$$

In this case, we will not distinguish between x' and x.

LEMMA 9. Let M be a subspace of $C_0(T)$ and $T' = \{t_1, t_2, ..., t_n\}$ a finite subset of T. Let M' = M | T'. If there exist $y'_1, y'_2 \in C(T')$ such that

PEI-KEE LIN

 $y_i(t_j) \in \{-1, 0, 1\}, P_{M'}(y'_i) = \{0\} \text{ for } i = 1, 2, j = 1, 2, ..., n, and$ $<math>0 \notin P_{M'}(y'_1 + y'_2) \text{ then } P_M \text{ has no linear selection.}$

Proof. Since $0 \notin P_{M'}(y'_1 + y'_2)$ there exists $m \in M$ such that

$$|| y'_1 + y'_2 - m | T' || < || y'_1 + y'_2 ||.$$

Choose pairwise disjoint neighborhoods U_i of t_i such that if $t \in U_i$ then $m(t) \operatorname{sgn} m(t_i) \ge \frac{1}{2} |m(t_i)|$. By Uryshon's lemma, there exist functions $x_i \in C_0(T)$ (i = 1, 2, ..., n) such that $0 \le x_i \le 1$, $x_i(t_i) = 1$ and $x_i(t) = 0$ off U_i . Set $y_j = \sum_{i=1}^n y'_j(t_i) x_i$ for j = 1, 2. Clearly, $||y_1|| = ||y_2|| = 1 = ||y'_1|| = ||y'_2||$. (Note: $y_1 \neq 0$; otherwise $y'_1 = 0$ and $P_{M'}(y'_1 + y'_2) = P_{M'}(y'_2) = \{0\}$. Similarly, $y_2 \neq 0$.) Hence, if $z \in P_M(y_i)$ for i = 1 or 2, then $z \mid T' = 0$. It is also clear that $||y_1 + y_2|| = ||y'_1 + y'_2||$ and if $|(y_1 + y_2)(t_i)| = ||y_1 + y_2||$, then $m(t)(y_1(t) + y_2(t)) \ge 0$ for $t \in U_i$. Since $|(y_1 + y_2)(t_i)| \in \{0, 1, 2\}$,

$$\| y_1 + y_2 - \alpha m \|$$

$$\leq \max \left(\left\| y_1' + y_2' - \frac{\alpha}{2} \cdot m \right\| T' \right\|, \| y_1 + y_2 \| - 1 + \alpha \| m \|, \alpha \| m \| \right)$$

$$< \| y_1 + y_2 \|$$

for $0 < \alpha < \min(1, 1/(2 ||m||))$. Therefore, if $z \in P_M(y_1 + y_2)$, then $z | T' \neq 0$ and P_M does not admit any linear selection.

It is easy to verify the following lemma.

LEMMA 10. Let $T = \{t_1, t_2, ..., t_n\}$ and let M be an n-1-dimensional subspace of C(T). If $card(sup m) \ge 2$ whenever $m \in M$ and $m \ne 0$, then M is Chebyshev. In this case, if $P_M(x) = 0$ and ||x|| = 1, then $|x(t_i)| = 1$ for i = 1, 2, ..., n.

The following theorem extends Theorem 3.5 of [2].

THEOREM 11. Let M be an n-dimensional subspace of $C_0(T)$. The following properties are equivalent.

(i) P_M admits a linear selection.

(ii) There exists a basis $\{m_1, m_2, ..., m_n\}$ of M such that $\operatorname{card}(\operatorname{supp} m_i) \leq 2$ for i = 1, 2, ..., n.

(iii) Let A_0 be the union of all isolated points of T, then there exist k disjoint subsets $B_1, B_2, ..., B_k$ of A_0 such that $M = \bigoplus_{i=1}^k M_i$, where M_i is either $C(B_i)$ or a hyperplane of $C(B_i)$.

Proof. (i) \Rightarrow (ii). There exists a subset $T' = \{t_1, t_2, ..., t_n\}$ of T such that

M | T' has dimension *n*. Therefore, M | T' = C(T') and there exist *n* functions $m_1, m_2, ..., m_n$ in *M* such that $m_i(t_j) = \delta_{ij}$, where δ_{ij} is the Kronecker delta. Clearly, the m_i 's form a basis of *M*. We claim that $\operatorname{card}(\operatorname{supp}(m_i)) \leq 2$. Suppose on the contrary that $\operatorname{card}(\operatorname{supp} m_1) \geq 3$. Let t_{n+1} and t_{n+2} be any two elements in $\operatorname{supp} m_1 - \{t_1\}$. Let $S_1 = \{i: m_i(t_{n+1}) \neq 0\}, S_2 = \{t: i \notin S_1 \text{ and } m_i(t_{n+2}) \neq 0\}, T'_1 = \{t_i: i \in S_1 \cup \{n+1\}\}, \text{ and } T'_2 = \{t_i: i \in S_2 \cup \{n+2\}\}$. Clearly, $M | T'_1$ has dimension $\operatorname{card}(S_1) = \operatorname{card}(T'_1) - 1$, and if $m \in M$ then either $m | T'_1 = 0$ or $\operatorname{card}(\operatorname{sup}(m)(T') \geq 2$. $M' = M | T'_1$ is Chebyshev in $C(T'_1)$. Hence, there exist $y' \in C(T'_1)$ such that $P_{M'}(y') = \{0\}$ and $| y'(t_1)| = 1$ for $t_i \in T'_1$. Similarly $M'' = \operatorname{span}\{m_i: i \in S_2\} | T'_2$ is Chebyshev in $C(T'_2)$ and there exist $y'' \in C(T'_2)$ such that $| y''(t_i)| = 1$ for $t_i \in T'_1$. Let $y_i, i = 1, 2$, in $C(T'_1 \cup T'_2)$ be defined by

$$y_{i}(t_{j}) = \begin{cases} y'(t_{j}) & \text{if } t_{j} \in T'_{1} \\ (-1)^{i} y''(t_{j}) & \text{if } t_{j} \in T'_{2}. \end{cases}$$

Let $T_1 = T'_1 \cup T'_2$ and $L = M | T_1$. We claim that $P_L(y_i) = \{0\}$ for i = 1, or 2. Suppose $m' \in P_L(y_i)$. Then $m' = \sum_{i \in S_1 \cup S_2} \alpha_i m_i | T_i$ and $m' | T'_1 = \sum_{i \in S_1} \alpha_i m_i | T'_1$ for some α_i 's. Since $y'_i | T'_1 = y'$, $|| y_i | T'_1 - m' | T'_1 || \leq || y_i || = 1 = || y_i | T'_1 ||$ if and only if $m' | T'_1 = 0$. Therefore, $\alpha_i = 0$ for $i \in S_1$ and $m' = \sum_{i \in S_2} \alpha_i m_i | T_1$. Since $y_i | T'_2 = \pm y''$, $|| (y_i - m') | T'_2 || \leq 1 = || y_i ||$ if and only if $\alpha_i = 0$ for $i \in S_2$. Hence, m' = 0. On the other hand,

$$(y_1 - y_2)(t_i) = \begin{cases} 0 & \text{if } t_i \in T'_1 \\ -2y''(t) & \text{if } t_i \in T'_2. \end{cases}$$

Since $M | T'_2 = L | T'_2 = C(T'_2)$, 0 does not belong to $P_L(y_1 - y_2)$. By Lemma 9, P_M does not admit a linear selection. This is a contradiction.

(ii) \Rightarrow (iii). Let \sim be an equivalence relation given by $i \sim j$ if supp $m_i \cap \text{supp } m_j \neq \emptyset$. If S is an equivalence class, then $M_S = \text{span}\{m_i : i \in S\}$ is a hyperplane of $C(\bigcup_{i \in S} \text{supp } m_i)$ unless $\operatorname{card}(\bigcup_{i \in S} \text{supp}(m_i)) = \operatorname{card} S$. If S_1 and S_2 are distinct equivalent classes, then $\bigcup_{i \in S_1} \text{supp}(m_i)$ and $\bigcup_{i \in S_2} \text{supp}(m_i)$ are disjoint. Hence,

$$M = \bigoplus M_s$$
 (sum over all equivalence classes S)

and M_s is either $C(\bigcup_{i \in S} \operatorname{supp}(m_i))$ or a hyperplane of $C(\bigcup_{i \in S} \operatorname{supp}(m_i))$.

(iii) \Rightarrow (i). Since M_i is a finite-dimensional subspace, M_i is proximinal. Hence, P_{M_i} admits a linear selection from $C(B_i)$ into M_i . Since $C_0(T) = \bigoplus_{i=1}^k C(B_i) \oplus C_0(T - \bigcup_{i=1}^k B_i)$ and $M = \bigoplus_{i=1}^k M_i \oplus \{0\}$, Lemma 4 P_M admits a linear selection.

The following theorem gives a characterization of finite co-dimensional subspaces of c_0 whose metric projections have a linear selections.

PEI-KEE LIN

THEOREM 12. Suppose M is an n-co-dimensional subspace of c_0 . The following properties are equivalent.

(i) P_M admits a linear selection s.

(ii) There exist n disjoint finite subsets $B_1, B_2, ..., B_n$ of \mathbb{N} such that $M = \bigoplus_{i=1}^n M_i \oplus C_0(\mathbb{N} - \bigcup_{i=1}^n B_i)$ where M_i is a hyperplane of $C(B_i)$.

Proof. (i) \Rightarrow (ii). Since the dimension of ker s is n, we can find n vectors $y_1, y_2, ..., y_n \in \text{ker s and } n$ points $t_1, t_2, ..., t_n \in \mathbb{N}$ such that $y_i(t_j) = \delta_{ij}$. Since $y_i \in c_0$, i = 1, 2, ..., n, there exists N such that if m > N then $|y_i(m)| < 1/2n$ for i = 1, 2, ..., n. Hence, for $y \in \text{ker s and } m > N$, $|y(m)| < \|y\|/2$. Let $M' = M | \{1, 2, ..., n\}$. Then $P_{M'}$ admits a linear selection $s | C(\{1, 2, ..., N\})$. By Theorem 11, there exist k disjoint sets $B_1, B_2, ..., B_k$ such that $\bigcup_{i=1}^k B_k = \{1, 2, ..., N\}$ and $M' = \bigoplus_{i=1}^k M_i$, where M_i is a hyperplane of $C(B_k)$. We claim that if x(i) = 0 for $i \leq N$, then $x \in M$. If it were not true then x = y + m for some $y \in \text{ker s and } m \in M$. Hence, y(i) = -m(i) for $i \leq N$. But $0 \in P_M(y)$ and $|y(j)| \leq ||y||/2$ for j > N. This is impossible. Therefore,

$$M = \bigoplus_{i=1}^{k} M_i \oplus C_0(\mathbb{N} - \{1, 2, \dots, N\})$$

and k = n (since M is an n-co-dimensional subspace).

(ii) \Rightarrow (i). M_i is proximinal hyperplane of $C(B_i)$. By Lemma 4, P_M admits a linear selection.

References

- 1. T. ANDO, Contractive projections in L_p spaces, Pacific J. Math 17 (1966), 391-405.
- 2. F. DEUTSCH, Linear selections for the metric projection, J. Funct. Anal. 49 (1982), 269-292.
- F. DEUTSCH, A survey of metric selections, in "Fixed Points and Nonexpansive Mappings" C. Sine, Ed.), Contemporary Math. Vol. 18, pp. 49-71, Amer. Math. Soc., Providence, R.I.
- F. R. DEUTSCH AND P. H. MASERICK, Applications of the Hahn-Banach theorem in approximation theory, SIAM Rev. 9 (1967), 516-530.
- 5. R. B. HOLMES, "A Course on Optimization and Best Approximation," Lecture Notes in Mathematics, No. 257, Springer-Verlag, Berlin/New York, 1972.
- R. C. JAMES, Orthogonality and linear functions in norm linear space, Trans. Amer. Math. Soc. 61 (1947), 265-292.
- 7. B. R. KRIPKE AND J. J. RIVLIN, Approximations in the metric of $L^{1}(X, \mu)$. Trans. Amer. Math. Soc. 115 (1965), 101–122.
- 8. H. E. LACEY, "The Isometric Theory of Classical Banach Spaces," Springer-Verlag, New York/Heidelberg/Berlin, 1974.
- 9. I. SINGER, "The Theory of Best Approximation and Functional Analysis," CBMS 13, SIAM, Philadelphia, 1974.