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The aim of this paper is to give a characterization of the finite-dimensional
subspaces of L,, 1<p< o, and Cy(T) whose metric projections admit linear
selections. The paper also gives a characterization of finite co-dimensional
subspaces of /; and ¢, whose metric projections have linear selections. © 1985
Academic Press, Inc.

1. INTRODUCTION

A linear subspace M of a normed linear space X is called proximinal
(resp. Chebyshev) if, for each x in X, the set of best approximations to x
from M, i.e., the set

Pulx) =y € Ms | x =] = inf |lx+ m])

is nonempty (resp. a singleton). The set-valued mapping Py: X - 2" thus
defined is called the metric projection onto M. A selection for P, is a
function s: X > M such that s(x) € P,,(x) for every x € X. Let M® denote

{(x€ X:|x||= inf ||x —m]||}.
meM

It is known [5] that P,, has a linear selection if and only if M° contains a
closed subspace N such that X =M + N,

In Section 2, we study the linear metric projections on L, = L (T, Z, u).
Let 4, denote a union of atoms in (7, X, u) and let A, =T—A4,. For an n-
dimensional subspace M of L,, we prove the following theorem. P, has a
linear selection if and only if there exist k disjoint measurable subsets
B,,B,,.., B, of A, such that M= ®}_, M, and M, is either L,(B,) or a
hyperplane of L, (B,), where L (B,) is the set

{feL,:supp(f)< B;}.
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LINEAR SELECTIONS FOR METRIC PROJECTION 65

If M is a n-co-dimensional subspace of L,, we prove the following theorem.
P,, admits a linear selection if and only if there exist n disjoint measurable
sets Ty, Ty ,..., T, such that M= @]\ M, ® L (T—- U}, T;), where M, is a
hyperplane of L (7).

In Section3, we consider the space L,=L,(7,X,u) of integrable
functions on the measure space (7, Z, ). For an n-dimensional subspace M
of L,, we prove the following theorem. P,, has a linear selection if and only
if there exists a subset T, of T which contains exactly » atoms such that for
eachmeM

[ im@idu>  (m)]da
0

T—T,

Let (e;) be the natural basis of /,. For any subspace M of I, we prove the
following theorem. P,, has a linear selection if and only if there exists a
subset S < N such that span{e;: i € S} is a complement of M and

Y (m@®)|> Y |m()
i¢s ies
for each m € M.

In Section 4, we consider the space C,(T) of all real-valued continuous
functions on the locally Hausdorff space T which vanish at infinity. Let 4,
be the union of all isolated points of 7. For an n-dimensional subspace M of
Cy(T), we prove that P,, admits a linear selection if and only if there exist k
disjoint subsets B,, B,,..., B, of 4, such that M = @*_, M,, where M, is
either C(B;) or a hyperplane of C(B,). For an n-co-dimensional subspace M
of ¢y, we prove that P,, has a linear selection if and only if there exist n
disjoint finite subsets B,,B,,.,B, of N such M= @]_ M >
co(N — (7, B;), where M, is a hyperplane of C(B,).

2. LINEAR SELECTIONS INL,, | <p < o0

Let (7,Z%,u) be-a measure space, and let L, =L (T,Z,u), 1 <p < oo,
denote the space of all real-valued measurable functions x on T whose
absolute pth powers are integrable and whose norm is

ixi= [, 1xor ai]

An atom is a set A € £ such that 0 < u(4) < oo and if B is a measurable
subset of 4 then either u(4)=u(B) or u(B)=0. Hence, any measurable
function x is constant a.e. () on an atom A4, and we can assume that every
atom contains only one point. For x € L, the support of x and zero set of x
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are defined (up to a set of measure zero) by supp(x)= {¢ € T: x(t) # 0} and
Z(x)=T—suppx= {tET:x(t)=0}. If x€ L,, we will denote by [x] the
one-dimensional subspace spanned by x.

Suppose M is a subspace of L,, 1 < p < oo, such that P, admits a linear
metric selection s. Then I —s is a contractive projection. The range N of
such a projection ([1], also see Theorem 3 of [8, p. 162]) is of the form

N={fg:.f€ Lp(Ts Lo, v)}’

where Z, is a subring of X, g € L (T, Z,u) and dv=|g| " du.
We need the following characterization of best approximations from
subspaces of L ,, 1 < p < 0.

LemMa 1. [4)LetO#y€EL,, 1<p<oo,and xEL, Thenx€ [y)*if
and only if

J ysgnx|x” 'du=0.
T
Hence, if 1 < p < 00, M is a subspace of

M= 3yeLP:jTysgnx|x|”"dy=0forallx€N£

3y€Lp:f y|g|"“sgng¢u=0forallA€)30§,
A

and M+ N=L,. Clearly M is a complement of N, and M =M. We have
the following theorem.

THEOREM 2. Let M be a subspace of L,, 1 <p < . Then P, admits a
linear selection if and only if there exist g € L, and a subring £, of £ such
that

M= {yELp:Lysgnglgl""d/.4/=0forallA E X,

Let 4, denote a union of atoms in (T, Z,4) and let 4, =T — 4,. We have
the following corollary.

COROLLARY 3. Suppose M is an n-dimensional subspace of L,,
1 < p < . The following properties are equivalent.
(i) P,, admits a linear selection s.

(ii) There exist k disjoint subsets B,,B,,..., B, of A, such that
M= ®%_, M,, where M, is either L,(B,) or a hyperplane of L ,(B,).
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Progf. (i)= (ii). The range N of I — s is an n co-dimensional subspace
of L,. One can verify that L,(4,)< N. Moreover, there exist k disjoint
measurable subsets B, B,,..., B, of 4, such that

k

N=L, (T— U B.-) é [8xs,)-

i=1

Hence, M = ®*_, M,, where
M;= ?yELpisupp(y)EB,-andfysgnglgl”“¢u=0 .

(ii))= (i). It follows from the following lemma and the fact that if M is
a proximinal hyperplane, then P,, has a linear selection.

LEMMA 4. Suppose M, is a proximinal subspace of X; and for each i, P,,,
admits a linear selection s;. Then M= (®M,), (resp. M= (D M,),),
1<p< o, (resp. p= o) is a proximinal subspace of X = (® X;), (resp.
X = (® X,),) Moreover, P,, has a linear selection @ s,.

Proof. For each x,€X;, (s,0()<2|x]. Hence, if (x;)€ X, then
(8;x;) €M, and (s,(x;)) is a best approximation to (x;) from M. So P,,
admits a linear selection. [

COROLLARY 5. Let M be an n-co-dimensional subspace of L,,
1 < p < . The following properties are equivalent.

1) P,, admits a linear selection s.
M

(ii) There exist n disjoint measurable sets T,,T,,..,T, such that
M= @, M;®L,(T~Uji., T,), where M, is a hyperplane of L (T ).

Proof. (i)= (ii). The range of I —s is an n-dimensional subspace of
L,. Hence, (T,2,,v) is purely atomic, and there exist n disjoint sets
1.,7,,..T,€%, such that g|T;,#0 for each i  Therefore,
M=@®_ M®L(T~-U},T;), where

M,={y€L,:suppy< T,andjysgng|g|”“du=0 .

(iiy= (i) L, is uniformly convex. Hence, every subspace is proximinal.
By Lemma 4, P,, admits a linear selection.
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3. LINEAR SELECTION IN L,

In this section, we give a characterization of those finite-dimensional
subspaces of L, whose metric projections admit linear selections. We will
need to use the following characterization of best approximations. It was first
proved in the case L,[0, 1] by James [6] and in the generality stated here by
Kripke and Rivlin [7].

LEMMA 6. Let x€ L, — {0}. Then O € P, (x) if and only if

U ysgnxdﬂlsj | y| du.
T Z(x)

Moreover, if strict inequality holds, then P, (x)= {0}.
The following theorem extends the result of Theorem 4.4 of [2].

THEOREM 7. Suppose that M is an n-dimensional subspace of L,. The
Jollowing properties are equivalent.

(i) Py, admits a linear selection.

(ii) There exists a subset T, of T which contains exactly n atoms such
that for any me M

[ im@rdez[ im()du

Proof. (1)= (ii). Let 4, denote a union of atoms in (7,2, u) and let
A,=T,—A,. Since the unit ball of M is weakly compact, there exists > 0
such that if u(B) < d then [, |m(f)ldu < 1/4 for mE M and |m| = 1. 4, is
atomless; hence, there exist disjoint measurable sets B,’s such that 4, = (J B,
and u(B,) < 6 for all i. First, we claim that if x € L, and supp x < B, for
some i, then x has exactly one best approximation 0. Clearly,

| msgnxdy) < Imr) du
T B;

<|mll/4
<3|m|/4

< imold

<[ Im() du.
Z(x)
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By Lemma 6, P,(x) = {0}. Now we claim that there exist 1, € A and mE M
such that

Im(e) eI > [ @) du

If it were not true, by Lemma6 each x with card(suppx)=1 and
supp(x) € 4, has exactly one best approximation 0. But every m € M is of
the form

m= 3" my,+Zmyg..

ted,

Hence, P,, does not admit any linear selection unless M = {0}. Choose
m, € M so that there exists ¢, € 4, and

(e > [ (@) du

Let M, ={me& M:m(t;)=0}. Repeat the above argument on M,, and
T — {t,}. There exist m, € M, and ¢, € 4, — {¢,} so that

Ima(t) ()| > f, | my(e)) du.

~ (L5}

Let M,={m& M, :m(t,)=0}. Replace m, by m, —m,(t,) m,/m,(t,) if
necessary. So we can assume m,(f,)=0. By induction, there exist
my, My, m, €M and {t,, ;... t,} =T, S 4, so that m,(t;)=0 if i # j and

imt e >[mOlde= im0 du

Clearly, m,, m,,...,m, form a basis of M. And for any mEe M

[ im@lde>{ |m@lde

(ii)=>(@{) LetN=L(T—-T,).Forx€NandmeM
[ im@ldu>[ |m)du
Z(x) T

> j _ Im()du

> . L m(t) sgnx(¢)du |.
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By Lemma6, N<= M’ Clearly, N is a complement of M. Therefore, P,
admits a linear selection. [

The next theorem gives a characterization of subspaces M of I, whose
metric projections admit linear selections.

THEOREM 8. Let M be a subspace of |, and let (e,) be the natural basis
of 1,. The following properties are equivalent.

(i) P, admits a linear selection s.

(ii) There exists a subset S of N such that span{e;:iE€ S} is a
complement of M and for every me M

2 Im@) > Y Im(@).

¢S ies§

Proof. (i)= (ii). Since N is purely atomic, the range of I—s is
spanned by a set of the form {x,: i€ S} where x,’s are pairwise disjoint and
i = min(supp x;). Moreover, we may assume that || x;|| = 1. We claim that for
k € supp x,, (I —s) e, = sgn x,(k) x;. Suppose this claim were proved. Then
for j, k € supp x;, either (I —s)e;+e,)=0 or (I—s)(e—e,)=0. Thus,
either (¢; +e;) € M or (¢, — ¢,) € M. And the set {m € M: supp m < supp x;}
is a hyperplane of /,(supp x,). So span{e;:i € S} is a complement of M and

(I—5s) (Z a,e,.) = > a;sgnx,(i) x;.
ies ies
Hence,

Z a;e;

ieS

=3 lal= |t -9 (3 el

ieS ieS

and 0€ P,, (3 ;5 @;€;). Therefore, by Lemma 6, for every m € M and the
choice a; = m(i) for i € S, we have

;s Im@) > Y |m@).

ieS

It remains to prove that for k € supp x;, (I —s)e, =sgnx;(k)x;. For
every k €N, (I —s) g is of the form Y, ¢ a}x;, and

2 lafl= Y afxl<lled = 1.
jeSs

jes
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On the other hand,
x;=I—s)x,

~(~s) ( S xk)e)

kesupp(x)

Y xI—s)e

kesupp(x)

D Y x(k)afx;.

kesupp(x) je§

And so Zkesupp(x,) xi(k) a =1 SlnCG Zkesupp(x,) Ixi(k)l - ”x1” = 1, we must
have af = sgn x,(k). Therefore ak=0if j#iand (I —s)e, = sgnx;(k) x; if
k € supp x;.

(ii)= (i). Let N=[(N—S). By Lemma6, NS M° Since N is a
complement of M, P,, admits a linear selection. [

Remark 1. If M is a subspace of codimension » in L, and if P,, admits a
linear selection s, then there exist n pairwise disjoint functions x,, X, ,..., X,
such that range(/ — s)=span{x,:i=1, 2,.., n}. Moreover, we can suppose
|lx;]| = 1. One can verify that if B is a measurable subset of supp x;, then
(I — 8)(x;x5) = | %;x5ll x;- Therefore, {m & M: supp(m)< supp(x;)} is a
hyperplane of L,(supp x;).

4. LINEAR SELECTION IN Cy(T)

Let T be a locally compact Hausdorff space. Cy(T") will denote the space
of all continuous real functions x on T which “vanish at infinity” (i.e.,
{tE T:|x(t)| > ¢} is compact for every £ > 0) and endowed with the uniform
norm: || x|| = sup{|x(¢)|: t € T}.

If T is a closed subset of T and x € C,(T), then x | 7" denotes restriction
of x to T'. If M is a closed subspace of Cy(T), then M'=M|T=
{m|T":me& M)} is a closed subspace of Cy(T"). P, will denote the metric
projection from Cy(T") into 2™'. If T” is also an open subset, we can extend
each x" € Co(T") by

x(t) if teT
x() = if t&T.

In this case, we will not distinguish between x’ and x.

LEMMA 9. Let M be a subspace of Co(T) and T’ = {t,, t,,.., t,} a finite
subset of T. Let M'=M|T'. If there exist y|,y5E€ C(T’) such that
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yE)E{=1,0,1}, P (y)=1{0} for i=1,2, j=1,2..,n and
0 & P,,(¥, +y}) then P,, has no linear selection.

Proof. Since 0 &€ P,,.(y] + y;) there exists m € M such that
11+ y;=m|T'| <] yi+yl.

Choose pairwise disjoint neighborhoods U, of f; such that if 1€ U, then
m(t) sgnm(t;) >3 |m(t;). By Uryshon’s lemma, there exist functions
X, €Cy(T) (i=1,2,.,n)such that 0 < x; < 1, x;(¢,) =1 and x,(t) =0 off U;.
Set y;=2.1_1¥j(t;) x, for j=1,2. Clearly, || y,|| = y,[|=1=| yill =l y3ll
(Note: y, # 0; otherwise y; =0 and P,,.(y; + y;) = Py, (y;) = {0}. Similarly,
v, #0.) Hence, if z€ P,(y;) for i=1 or 2, then z|T'=0. It is also clear
that |y, +y.l=llyi+y3ll and if [(y, +2:)(EN =y, +2.l, then
m(t)(,(t) + y,(£)) > 0 for t € U, . Since |(y, + y)(t) € {0, 1, 2},

71452 = am|
23
<max (|| 1 +93= 5 mI 77| Iy, 422l = 1+ aljm]. ami)
<l pi+l

for 0 < @ < min(1, 1/(2 |jm|))). Therefore, if z € P, (y, +y,), then z|T' #0
and P,, does not admit any linear selection. [

It is easy to verify the following lemma.

Lemma 10. Let T={t,,t,,..,¢t,} and let M be an n — l-dimensional
subspace of C(T). If card(sup m) > 2 whenever m € M and m # 0, then M is
Chebyshev. In this case, if P, (x)=0 and |x|=1, then |x(t)|=1 for
i=1,2,.,n

The following theorem extends Theorem 3.5 of [2].

THEOREM 11. Let M be an n-dimensional subspace of C.(T). The
Jollowing properties are equivalent.
(i) P, admits a linear selection.
(ii) There exists a basis {m,,my,...,m,} of M such that
card(suppm;) <2 for i=1,2,...,n.
(iii) Let A, be the union of all isolated points of T, then there exist k
disjoint subsets B,,B,,..,B, of A, such that M= @%_ | M,, where M, is
either C(B,) or a hyperplane of C(B,).

Proof. (i)= (ii). There exists a subset T" = {¢,, t,,..., t,} of T such that
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M| T’ has dimension n. Therefore, M | T’ = C(T") and there exist n functions
my, My,...,m, in M such that m(t;) = d,;, where J;; is the Kronecker delta.
Clearly, the ms form a basis of M. We claim that card(supp(m,))< 2.
Suppose on the contrary that card(supp m,)> 3. Let ¢,,, and #,,, be any
two elements in suppm, — {t,}. Let S, ={iimJt,, )#0}, S,={ti€& S,
and myt,,,)#0), Ti={t:i€S,U{n+1}}, and Ti={t:i€S,U
{n+2}}. Clearly, M|T, has dimension card(S,)=card(T])— 1, and if
mEM then either m|T;=0 or card(sup(m}T')>2. M'=M|T; is
Chebyshev in C(T;). Hence, there exist y’ € C(T}) such that P,.(y’)= {0}
and |y'(t))=1 for t,€T,|. Similarly M"” =span{im,:i€ S,}|T; is
Chebyshev in C(7%) and there exist y” € C(7T;) such that | y”(¢,)) =1 for
t,€Tj, and P,.(y")=10}. Let y;,, i= 1,2, in C(T{\U T}) be defined by

y'(t; if ,eT,
yi(tj) = ( j)i " : / 1

=D'y"(¢) if eT;.
Let T)=T;UT},and L =M |T,. We claim that P,(y;)= {0} fori= 1, or 2.
Suppose m’ € P,(y;). Then m'= Zieslusz a;m;|T;, and m'|T|=
2ies, a;m; | T} for some a/s. Since y;|Ti=y, [ y|Ti—m'|Ti|<
lyl=1=]|y;|T{| if and only if m'|T|=0. Therefore, a;,=0 for i€ §,
and m' =3 g a;m;| T,. Since y; | T = +y", [(0;—m") | | < L= pi]| if
and only if @, =0 for i € §,. Hence, m’ = 0. On the other hand,

0 if EeT,
Py =y2)@) —2"() if LET.

Since M|T;=L|T,=C(T;), O does not belong to P,(y,—y,). By
Lemma 9, P,, does not admit a linear selection. This is a contradiction.

(ii) = (iii)). Let ~ be an equivalence relation given by i~j if
suppm;Msuppm;#@. If S is an equivalence class, then
M, =span{m;:i€ S} is a hyperplane of C({),.ssuppm;) unless
card(l) ;s Supp(m;)) = card S. If S, and S, are distinct equivalent classes,
then (e, supp(m;) and {5, supp(m,) are disjoint. Hence,

M=0® M; (sum over all equivalence classes .S)

and M is either C({,;c5 supp(m;)) or a hyperplane of C({J,.s supp(m,)).
(iii)= (i). Since M, is a finite-dimensional subspace, M, is proximinal.
Hence, P, admits a linear selection from C(B;) into M,. Since Cy(T)=
X C(B)®DCy(T—U*,B,) and M= @' ,M,® {0}, Lemmad P,
admits a linear selection. [

The following theorem gives a characterization of finite co-dimensional
subspaces of ¢, whose metric projections have a linear selections.
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THEOREM 12. Suppose M is an n-co-dimensional subspace of c,. The
JSollowing properties are equivalent.

(i) P,, admits a linear selection s.

(ii)) There exist n disjoint finite subsets B,,B,,..., B, of N such that
M= @ M®C,N—TI.,B;) where M, is a hyperplane of C(B)).

Proof. (i)= (ii). Since the dimension of kers is n, we can find n
vectors y,, ¥, .., ¥, € ker s and n points ¢,, t,,..., t, € N such that y,(¢,) = 6,;.
Since y,€c¢y, i=1,2,.,n, there exists N such that if m >N then
| yi(m) < 1/2n for i=1,2,..,n. Hence, for yE kers and m > N, | y(m)| <
I »I/2. Let M'=M|{l,2,.,n}. Then P, admits a linear selection
s| C({1, 2,.., N}). By Theorem 11, there exist k disjoint sets B,, B,,..., B,
such that %, B, = {1, 2,., N} and M’ = ®*_, M,, where M, is a hyper-
plane of C(B,). We claim that if x({) = O for i < N, then x € M. If it were not
true then x =y + m for some y € ker s and m € M. Hence, y(i) = —m(j) for
i<N. But 0€ P, (y) and | y() < || »l/2 for j> N. This is impossible.
Therefore,

M= é M,® Cy(N — {1,2,..,N})

i=1

and k= n (since M is an n-co-dimensional subspace).

(ii)) = (i). M, is proximinal hyperplane of C(B,). By Lemma 4, P,, admits
a linear selection. B
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